Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25290, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333809

RESUMO

Al2O3 is considered a promising material for high-power microwave windows due to its low dielectric loss, excellent mechanical properties, and outstanding corrosion resistance. However, the inherent brittleness and low thermal conductivity pose significant challenges in achieving a dependable metal seal. In this study, vacuum brazing technology was employed to achieve brazing sealing between copper and single crystal Al2O3. The interface structure, mechanical properties, and sealing properties of the brazing joint were focused on. The brazed joints exhibited outstanding mechanical properties with an average shear strength of 207 MPa. The sealing performance of the Al2O3 window was conclusively determined to be excellent, as evidenced by the helium leakage rate and X-ray testing results. The dielectric properties and standing wave coefficient of Al2O3 window were analyzed using a vector network analyzer in combination with a quasi-optical resonator and free space test system. The results indicate that the Al2O3 window exhibits an extremely low dielectric loss of 10-5 magnitude at 95-98 GHz, accompanied by a standing wave coefficient below 2, which satisfies the requirements of high-power microwave windows.

2.
Phys Chem Chem Phys ; 25(15): 10313-10324, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987913

RESUMO

To date, the manipulation of intermolecular nonconjugation interactions in organic crystals is still a great challenge due to the complexity of weak intermolecular interactions. Here we designed molecules substituted by ß-methylselenyl on naphtho[1,2-b:5,6-b']dithiophene and anthra[2,3-b:6,7-b']dithiophene, respectively (anti-ß-MS-NDT, anti-ß-MS-ADT), which together with anti-ß-MS-BDT synthesized experimentally all exhibited 2D brickwork π-stacking. Moreover, their maximum molecular carrier mobilities reached 3.30 and 16.46 cm2 V-1 s-1. These results indicated that the substitution of ß-methylselenyl could be a strategy to directionally adjust the parent herringbone stacking into 2D brickwork π-stacking. Hirshfeld surface analysis and symmetry-adapted perturbation theory (SAPT) were used to investigate the nonconjugated interactions in the pitched π-stacking formed by the ß-methylthio-substituted acenedithiophene derivatives and the 2D brickwork π-stacking of the ß-methylselenyl-substituted ones; wherein, the steric hindrance caused by the introduction of the substituents promoted Csp2-Csp2⋯π interactions to replace Csp2-H⋯π to stabilize the face-to-face stacking. Moreover, by calculating the decomposition energy of the intermediate state model of the molecular stacking mode that may exist in the replacement conversion process, it was found that the energy of this intermediate state was larger than that of the actual ones, finally confirming the inevitability of the actual existence in this stacking. In addition, because of the reduction in intensity of the special vibration modes, it could be found that the ß-methylselenyl substitution showed better phonon assistance than ß-methylthio substitution in terms of dynamic disorder. This study is a further step toward fully understanding the relationship between intermolecular interactions and regulation of the molecular stacking.

3.
Cereb Cortex ; 33(3): 754-763, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301516

RESUMO

This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
4.
Phys Chem Chem Phys ; 25(1): 540-554, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484128

RESUMO

2,6-Diphenyl anthracene (2,6-DPA) is a well-known anthracene derivative with high hole mobility (34 cm2 V-1 s-1) among p-type organic semiconductors (OSCs). In contrast, three 2,6-dipyridyl anthracene (2,6-DPyA) molecules (ortho-, meta-, and para-pyridyl), which are isoelectronic to 2,6-DPA showed relatively low mobility in experiments. To explore the origin of different charge transport properties and gain new inspiration on the design of novel organic semiconductor materials, the intrinsic hole transport property of 2,6-DPA and three isomeric 2,6-DPyAs were theoretically investigated and compared by quantum-chemical methodology and molecular dynamics simulation. The calculated results indicate that the intrinsic mobility of 2,6-DPyA-b (meta-) is superior to that of 2,6-DPA (12.73 vs. 3.54 cm2 V-1 s-1). Furthermore, the possibility that 2,6-DPyA-b may be strongly affected by thermal fluctuations is excluded because of the strong intermolecular C-H⋯N interactions (H-bonds). In addition, the crystal growth morphology prediction is considered in depth by the attachment energy (AE) model. The prediction results demonstrate that the strong intermolecular H-bonds in 2,6-DPyA do not facilitate the formation of a large and regular crystal face but rather the production of many grains and grain boundaries, which is not conducive to the charge carrier transport. This study reflects the paradox of the H-bond in OSCs and highlights the indispensability of the mesoscopic crystal growth morphology prediction in identifying high performance OSC materials and the establishment of the relationship between microcosmic organic molecules and macroscopic device performance.

5.
Materials (Basel) ; 15(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207830

RESUMO

Porous BN/Si3N4 ceramics carbon-coated by carbon coating were joined with SiCo38 (wt. %) filler. The formation process and strengthening mechanism of silicon carbide nanowires to the joint were analyzed in detail. The outcome manifests that there is no distinct phase change in the porous BN/Si3N4 ceramic without carbon-coated joint. The highest joint strength was obtained at 1320 °C (~38 MPa). However, a larger number of silicon carbide nanowires were generated in the carbon-coated joints. The highest joint strength of the carbon-coated joint was ~89 MPa at 1340 °C. Specifically, silicon carbide nanowires were formed by the reaction of the carbon coated on the porous BN/Si3N4 ceramic with the SiCo38 filler via the Vapor-Liquid-Solid (VLS) method and established a bridge in the joint. It grows on the ß-SiC (111) crystal plane and the interplanar spacing is 0.254 nm. It has a bamboo-like shape with a resemblance to alloy balls on the ends, and its surface is coated with SiO2. The improved carbon-coated porous BN/Si3N4 joint strength is possibly ascribed to the bridging of nanowires in the joint.

6.
FEBS Lett ; 596(7): 924-937, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156707

RESUMO

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful elements, while it also restricts efficient drug delivery into the CNS. Previously, we generated a mutated fragment of Clostridium perfringens enterotoxin (cCPEYWSH ) which specifically binds to the endothelial tight junction protein claudin-5. Here, we explore the mechanisms regulating the dynamics of membranous claudin-5 and BBB permeability. Following cCPEYWSH binding to claudin-5, caveolin-1 mediates the redistribution of claudin-5 to the cytosol. This abnormal cytosolic aggregation triggers the autophagic degradation of claudin-5, leading to an increase in BBB permeability. Enhancement or inhibition of autophagy accelerates or inhibits the degradation of cytosolic claudin-5, respectively. Our findings may pave the way for improving BBB permeability for drug delivery.


Assuntos
Claudina-5 , Enterotoxinas , Junções Íntimas , Autofagia , Barreira Hematoencefálica/metabolismo , Clostridium perfringens , Enterotoxinas/metabolismo , Permeabilidade , Junções Íntimas/metabolismo
7.
Front Med (Lausanne) ; 8: 713981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676223

RESUMO

Hepatitis B virus (HBV) infection is a common contributor to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Approximately 10% of people with human immunodeficiency virus (HIV) also have chronic HBV co-infection, owing to shared transmission routes. HIV/HBV coinfection accelerates the progression of chronic HBV to cirrhosis, end-stage liver disease, or hepatocellular carcinoma compared to chronic HBV mono-infection. HBV/HIV coinfection alters the natural history of hepatitis B and renders the antiviral treatment more complex. In this report, we conducted a critical review on the epidemiology, natural history, and pathogenesis of liver diseases related to HBV/HIV coinfection. We summarized the novel therapeutic options for these coinfected patients.

8.
Phys Chem Chem Phys ; 23(22): 12679-12691, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036996

RESUMO

High-performance organic semiconductor materials based on the small aromatic anthracene-core and its derivatives develop comparatively slowly due to the lack of a profound understanding of the influence of chemical modifications on their charge-transfer properties. Herein, the electronic properties and the charge transport characteristics of several typical anthracene-based derivatives with aryl groups substituted at the 2,6-site are systematically investigated by multi-scale simulation methods including Molecular Dynamics (MD) simulation and the full quantum nuclear tunneling model in the framework of density functional theory (DFT). To elucidate the origin of different charge transport properties of these anthracene-based materials, analysis of the molecular stacking and noncovalent intermolecular interaction caused by different substituents was carried out. The results indicate that the electron and hole injection capabilities and the air oxidation stability of the anthracene derivatives are greatly improved when the size of the aryl substituent increases. In addition, the incorporation of 2,6-site aryl substituents can inhibit the stretching vibration of the anthracene-core during charge transport, and allow molecular packing along the long axis (a-axis of DPA and BDBFAnt, and c-axis of dNaAnt) with almost no slippage, and the main transport channels remain unchanged, exhibiting more isotropic 2D transport properties. It should be emphasized that the edge-to-face dimers with smallest dihedral angles are closest to the thermally stable dimer model, with relatively larger π-orbital distributions in transmission channels (dimer 1, 2) and the largest spatial overlap, resulting in the largest hole transfer integral in DPA (Vh1/h2 = 57 meV). Although the analysis of the thermal disorder effect shows a phonon scattering effect, the maximum hole mobility of the DPA molecule is still as high as 1.5 cm2 V-1 s-1.

9.
Phys Chem Chem Phys ; 23(9): 5652-5664, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33656501

RESUMO

To develop solid-state light-emitting materials with high luminescence efficiency, determining the potential photophysics and luminescence mechanisms of the aggregation state remains a challenge and a priority. Here, we apply density functional theory to study the photophysical properties of a series of square planar Pt(ii) complexes in both monomeric and dimeric forms. We reveal that four monomeric Pt(ii) complexes are dominated by triplet ligand-to-ligand charge-transfer, and the lack of the triplet metal-to-ligand charge-transfer feature results in weak spin-orbit coupling (SOC), which leads to limited radiative rates; moreover, calculated nonradiative transition rates are one or two orders of magnitude higher than those radiative rates because a large amount of reorganization energy caused by the vibration of the bipyrazolate (bipz) ligand cannot be readily suppressed in the monomeric form. Therefore, four monomers exhibit photoluminescence quenching in CH2Cl2 solution in both theoretical calculations and experiments. However, in the solid state, the intense luminescence phenomenon indicates obviously distinct properties between the monomer and aggregation. We carried out a dimer model to interpret that the interaction of PtPt induces a metal-metal-to-ligand charge-transfer excimeric state, which leads more metal components to participate in the charge transfer and enhance the SOC effect. At the same time, the ligand vibration can be significantly reduced by the shortened distance, and there is a strong π-π packing interaction in the dimer; thus, an excellent quantum yield can be achieved in aggregation. In addition, we disclose that introducing bulky substituents bearing electron-donating groups at R' and R'' positions have little effect on the properties of the monomers; however, there is a benefit of restricting the internal reorganization energy through the intermolecular interaction when packing in the solid state. Therefore, substitutions can be tuned to improve the properties of monomers (such as emission energy and reorganization energy). We hope that our work will shine some light on Pt(ii) emitters in the fabrication of efficient OLEDs.

10.
Autophagy ; 17(10): 3048-3067, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33280500

RESUMO

Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB integrity remains unclear. Here we report that in BMECs of patients suffering stroke, CLDN5 (claudin 5) abnormally aggregates in the cytosol accompanied by autophagy activation. In vivo zebrafish and in vitro cell studies reveal that BBB breakdown is partially caused by CAV1 (caveolin 1)-mediated redistribution of membranous CLDN5 into the cytosol under hypoxia. Meanwhile, autophagy is activated and contributes mainly to the degradation of CAV1 and aggregated CLDN5 in the cytosol of BMECs, therefore alleviating BBB breakdown. Blockage of autophagy by genetic methods or chemicals aggravates cytosolic aggregation of CLDN5, resulting in severer BBB impairment. These data demonstrate that autophagy functions in the protection of BBB integrity by regulating CLDN5 redistribution and provide a potential therapeutic strategy for BBB disorder-related cerebrovascular disease.Abbreviations: BBB: blood-brain barrier; BECN1: beclin 1; BMEC: brain microvascular endothelial cell; CAV1: caveolin 1; CCA: common carotid artery; CLDN5: claudin 5; CNS: central nervous system; CQ: chloroquine; HIF1A: hypoxia inducible factor 1 subunit alpha; MCAO: middle cerebral artery occlusion-reperfusion; OCLN: occludin; ROS: reactive oxygen species; STED: stimulated emission depletion; TEER: trans-endothelial electrical resistance; TEM: transmission electron microscopy; TJ: tight junction; TJP1: tight junction protein 1; UPS: ubiquitin-proteasome system.


Assuntos
Autofagia , Barreira Hematoencefálica , Claudina-5 , Células Endoteliais , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica/patologia , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Humanos , Hipóxia , Acidente Vascular Cerebral/patologia , Peixe-Zebra/metabolismo
11.
MedComm (2020) ; 1(3): 270-301, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173860

RESUMO

Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.

12.
Financ Res Lett ; 36: 101659, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32837371

RESUMO

This paper develops a down-and-out call option model by introducing a structural break in volatility to capture the coronavirus (COVID-19) outbreak. The life insurer's equity and its board's utility are evaluated at the optimal guaranteed rate in the equity maximization. Results suggest that the seriousness degree of the COVID-19 outbreak and capital regulation enhance the optimal guaranteed rate and the board's utility. Increased the board's utility by increasing liabilities costs insurer profitability. Conflicts of incentives can arise during the COVID-19 outbreak.

13.
J Phys Chem A ; 123(15): 3300-3314, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30900901

RESUMO

To obtain anthracene-based derivatives with electron transport behavior, two series of anthracene-based derivatives modified by trifluoromethyl groups (-CF3) and cyano groups (-CN) at the 9,10-positions of the anthracene core were studied. Their electronic structures and crystal packings were also analyzed and compared. The charge-carrier mobilities were evaluated by quantum nuclear tunneling theory based on the incoherent charge-hopping model. Our results suggest that introducing -CN groups at 9,10-positions of the anthracene core is more favorable than introducing -CF3 to maintain great planar rigidity of the anthracene skeleton, decreasing more lowest unoccupied molecular orbital energy levels (0.45-0.55 eV), reducing reorganization energies, and especially forming a tight packing motif. Eventually, the excellent electron transport materials could be obtained. The molecule 1-B in Series 1 containing -CF3 groups is an ambipolar organic semiconductor (OSC) material with a 2D transport network, and its value of µh-max/µe-max is 1.75/0.47 cm2 V-1 s-1 along different directions; 2-A and 2-C in Series 2 with -CN groups are excellent n-type OSC candidates with the maximum intrinsic mobilities of 3.74 and 2.69 cm2 V-1 s-1 along the π-π stacking direction, respectively. Besides, the Hirshfeld surface and quantum theory of atoms in molecules analyses were applied to reveal the relationship between noncovalent interactions and crystal stacking.

14.
Phys Chem Chem Phys ; 21(6): 3044-3058, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672532

RESUMO

It is very important to analyse the most advantageous connection style for quinoidal thiophene derivatives, which are used in n-type organic semiconductor transport materials. In the present work, the charge transport properties of three series of quinoidal thiophene derivatives, oligothiophene (series A), thienothiophene (series B) and benzothiophene (series C), are systematically investigated by employing full quantum charge transfer theory combined with kinetic Monte-Carlo simulation. The single crystal structures of the molecules we had constructed were predicted using the USPEX program combined with density functional theory (DFT) and considering the dispersion corrected. Our theoretical results expounded how the different connection styles, including oligo-, thieno-, and benzo-thiophene in the quinoidal thiophenes derivatives, effectively tune their electronic structures, and revealed how their intermolecular interactions affect the molecular packing patterns and hence their charge transport properties by symmetry-adapted perturbation theory (SAPT). In the meantime we also elucidated the role of end-cyano groups in noncovalent interactions. Furthermore, it is clarified that quinoidal thiophene derivatives show excellent carrier transport properties due to their optimal molecular stacking motifs and larger electronic couplings besides their low energy gap. In addition, our theoretical results demonstrate that quinoidal oligothiophene derivatives (n = 3-5) with more thiophene rings will have ambipolar transport properties, so quinoidal thienothiophene and benzothiophene derivatives should be promising alternatives as n-type OSCs. When we focused only on the electronic transport properties in the three series of molecules, quinoidal benzothiophene derivatives were slightly better than quinoidal oligothiophene or thienothiophene derivatives.

15.
Sci Rep ; 7(1): 17166, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215037

RESUMO

This study aims at evaluating the prognostic significance of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and systemic immune-inflammation indexes (SII) in metastatic colorectal cancer (mCRC) patients treated with cetuximab. Ninety-five patients receiving cetuximab for mCRC were categorized into the high or low NLR, PLR, LMR, and SII groups based on their median index values. Univariate and multivariate survival analysis were performed to identify the indexes' correlation with progression-free survival (PFS) and overall survival (OS). In the univariate analysis, ECOG performance status, neutrphil counts, lymphocyte counts, monocyte counts, NLR, PLR, and LDH were associated with survival. Multivariate analysis showed that ECOG performance status of 0 (hazard ratio [HR] 3.608, p < 0.001; HR 5.030, p < 0.001, respectively), high absolute neutrophil counts (HR 2.837, p < 0.001; HR 1.922, p = 0.026, respectively), low lymphocyte counts (HR 0.352, p < 0.001; HR 0.440, p = 0.001, respectively), elevated NLR (HR 3.837, p < 0.001; HR 2.467, p = 0.006) were independent predictors of shorter PFS and OS. In conclusion, pre-treatment inflammatory indexes, especially NLR were potential biomarkers to predict the survival of mCRC patients with cetuximab therapy.


Assuntos
Biomarcadores Tumorais/análise , Cetuximab/uso terapêutico , Neoplasias Colorretais/mortalidade , Inflamação/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Pulmonares/mortalidade , Proteínas ras/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/uso terapêutico , Plaquetas/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Inflamação/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Neutrófilos/patologia , Prognóstico , Taxa de Sobrevida , Proteínas ras/genética
16.
Oncotarget ; 7(21): 31215-25, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27145279

RESUMO

Capillary invasion (CI) has been found to play an important role in metastasis and recurrence of gastric adenocarcinoma (GAC). However, the prognostic significance of CI is still controversial. From January 2005 to December 2011, 1398 patients with GAC who underwent gastrectomy were retrospectively enrolled and divided into CI (+) and CI (-) groups. Clinicopathological features and survival outcomes were compared between these groups. In our study, 227 (16.2%) patients were CI (+). Patients with CI (+) had significantly more advanced tumors and worse prognosis than those with CI (-) (p < 0.001). CI was demonstrated as an independent prognostic factor (p = 0.023) in patients with GAC. When stratified by TNM stage, the prognosis of CI (+) group in stage III was remarkably worse than CI (-) group (p = 0.006), while the differences were not significant in stage I-II and stage IV (both p > 0.05). The nomograms indicated that CI was part of the individual prognostic prediction system. The predictive accuracy of CI and other characteristics was better than TNM alone (p < 0.001). Our finding suggested that CI was an independent prognostic factor in patients with GAC, and the nomogram based on CI and other clinicopathological factors was a valuable and accurate tool in individual prognostic prediction.


Assuntos
Adenocarcinoma/patologia , Capilares/patologia , Neoplasias Gástricas/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Estadiamento de Neoplasias , Nomogramas , Prognóstico , Estudos Retrospectivos , Fatores de Risco
17.
ACS Macro Lett ; 4(10): 1072-1076, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35614806

RESUMO

Polystyrene of different molecular weights and their binary mixtures are studied in terms of their various mechanical responses to uniaxial compression at different temperatures. PS of Mw = 25 kg/mol is completely brittle until it is above its glass transition temperature Tg. In contrast, upon incorporation of a high molecular weight component, PS mixtures turn from barely ductile a few degrees below its Tg to ductile over 40° below Tg. In the upper limit, a PS of Mw = 319 kg/mol yields and undergoes plastic flow, even at T = -70 °C. The observed dependence of mechanical responses on molecular weight and molecular weight distribution can be adequately rationalized by the idea that yielding and plastic compression are caused by chain networking.

18.
J Chem Phys ; 141(9): 094905, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25194392

RESUMO

This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature, can cause f(cp) to rise above its ambient value, reaching 0.6 nN at 0.8 kbar. Our theoretical description identifies the areal density ψ of LBSs in the chain network as the key structural parameter to depict the characteristics of the BDT for all polymer glasses made of flexible (Gaussian) linear chains. In particular, it explains the surprising linear correlation between the tensile stress σ(BD) at the BDT and ψ. Moreover, the theoretical picture elucidates how and why each of the following four factors can change the coordinates (σ(BD), T(BD)) of the BDT: (i) mechanical "rejuvenation" (i.e., large deformation below T(g)), (ii) physical aging, (iii) melt stretching, and (iv) pressurization. Finally, two methods are put forward to delineate the degree of vitrification among various polymer glasses. First, we plot the distance of the BDT from T(g), i.e., T(g)/T(BD) as a function of ψ to demonstrate that different classes of polymer glasses with varying degree of vitrification show different functional dependence of T(g)/T(BD) on ψ. Second, we plot the tensile yield stress σ(Y) as a function T(g)/T to show that bisphenol-A polycarbonate (bpA-PC) is less vitreous than PS and PMMA whose σ(Y) is considerably higher and shows much stronger dependence on T(g)/T than that of bpA-PC.

19.
ACS Macro Lett ; 3(8): 784-787, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590699

RESUMO

The origin of high mechanical stresses in large deformation of polymer glasses has been elusive because both plasticity and elasticity take place. In this work on the nature of the mechanical responses, we carry out uniaxial compression experiments to make simultaneous mechanical and thermal measurements of polycarbonate. Our results confirm that two factors contribute to the growing mechanical stress in the post-yield regime, which is known as "strain hardening". Besides plastic deformation that is intersegmental in origin, chain tension as an intrasegmental component contributes considerably to the measured stress in post-yield. Such a conclusion modifies the previous consensus regarding the nature of strain hardening in mechanical deformation of polymer glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA